Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135691

RESUMO

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Assuntos
Doença Celíaca , Glutens , Camundongos , Animais , Humanos , Coelhos , Glutens/química , Anticorpos Neutralizantes , Antígenos HLA-DQ , Peptídeos/química , Epitopos/química , Camundongos Transgênicos
2.
Methods ; 154: 10-20, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326272

RESUMO

The antibody drug market is rapidly expanding, and various antibody engineering technologies are being developed to create antibodies that can provide better benefit to patients. Although bispecific antibody drugs have been researched for more than 30 years, currently only a limited number of bispecific antibodies have achieved regulatory approval. Of the few successful examples of industrially manufacturing a bispecific antibody, the "common light chain format" is an elegant technology that simplifies the purification of a whole IgG-type bispecific antibody. Using this IgG format, the bispecific function can be introduced while maintaining the natural molecular shape of the antibody. In this article, we will first introduce the outline, prospects, and limitations of the common light chain format. Then, we will describe the identification and optimization process for ERY974, an anti-glypican-3 × anti-CD3ε T cell-redirecting bispecific antibody with a common light chain. This format includes one of Chugai's proprietary technologies, termed ART-Ig technology, which consists of a method to identify a common light chain, isoelectric point (pI) engineering to purify the desired bispecific IgG antibody from byproducts, and Fc heterodimerization by an electrostatic steering effect. Furthermore, we describe some tips for de-risking the antibody when engineering a T cell redirecting antibody.


Assuntos
Anticorpos Biespecíficos , Imunoglobulina G , Cadeias Leves de Imunoglobulina , Engenharia de Proteínas/métodos , Animais , Complexo CD3/imunologia , Glipicanas/imunologia , Humanos , Camundongos
3.
Sci Transl Med ; 9(410)2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978751

RESUMO

Cancer care is being revolutionized by immunotherapies such as immune checkpoint inhibitors, engineered T cell transfer, and cell vaccines. The bispecific T cell-redirecting antibody (TRAB) is one such promising immunotherapy, which can redirect T cells to tumor cells by engaging CD3 on a T cell and an antigen on a tumor cell. Because T cells can be redirected to tumor cells regardless of the specificity of T cell receptors, TRAB is considered efficacious for less immunogenic tumors lacking enough neoantigens. Its clinical efficacy has been exemplified by blinatumomab, a bispecific T cell engager targeting CD19 and CD3, which has shown marked clinical responses against hematological malignancies. However, the success of TRAB in solid tumors has been hampered by the lack of a target molecule with sufficient tumor selectivity to avoid "on-target off-tumor" toxicity. Glypican 3 (GPC3) is a highly tumor-specific antigen that is expressed during fetal development but is strictly suppressed in normal adult tissues. We developed ERY974, a whole humanized immunoglobulin G-structured TRAB harboring a common light chain, which bispecifically binds to GPC3 and CD3. Using a mouse model with reconstituted human immune cells, we revealed that ERY974 is highly effective in killing various types of tumors that have GPC3 expression comparable to that in clinical tumors. ERY974 also induced a robust antitumor efficacy even against tumors with nonimmunogenic features, which are difficult to treat by inhibiting immune checkpoints such as PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T lymphocyte-associated protein-4). Immune monitoring revealed that ERY974 converted the poorly inflamed tumor microenvironment to a highly inflamed microenvironment. Toxicology studies in cynomolgus monkeys showed transient cytokine elevation, but this was manageable and reversible. No organ toxicity was evident. These data provide a rationale for clinical testing of ERY974 for the treatment of patients with GPC3-positive solid tumors.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Glipicanas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/farmacocinética , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo CD3/metabolismo , Citocinas/metabolismo , Humanos , Imunocompetência/efeitos dos fármacos , Injeções Intravenosas , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Macaca fascicularis , Camundongos Transgênicos , Esteroides/farmacologia , Esteroides/uso terapêutico , Linfócitos T/efeitos dos fármacos
4.
Sci Rep ; 6: 22324, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927947

RESUMO

Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions.


Assuntos
Inflamação/genética , Ribonucleases/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Engenharia de Proteínas , Multimerização Proteica/genética , Ribonucleases/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...